# Nel

## Definitions

`def ap(f: Nel[a -> b \ ef], l: Nel[a]): Nel[b] \ ef`Source

Apply every function from `f` to every argument from `l` and return a non-empty list with all results. For `f = f1, f2, ...` and `x = x1, x2, ...` the results appear in the order `f1(x1), f1(x2), ..., f2(x1), f2(x2), ...`.

`def append(l1: Nel[a], l2: Nel[a]): Nel[a]`Source

Returns `l2` appended to `l1`.

`def cons(x: a, l: Nel[a]): Nel[a]`Source

Returns the non-empty list `l` prefixed with the new element `x`.

`def count(f: a -> Bool \ ef, l: Nel[a]): Int32 \ ef`Source

Returns the number of elements in `l` that satisfy the predicate `f`.

`def dropWhile(f: a -> Bool \ ef, l: Nel[a]): List[a] \ ef`Source

Returns `l` without the longest prefix that satisfies the predicate `f`.

`def enumerator(rc: Region[r], l: Nel[a]): Iterator[(Int32, a), r, r] \ r`Source

Returns an iterator over `l` zipped with the indices of the elements.

`def exists(f: a -> Bool \ ef, l: Nel[a]): Bool \ ef`Source

Returns `true` if and only if at least one element in `l` satisfies the predicate `f`.

`def filter(f: a -> Bool, l: Nel[a]): List[a]`Source

Returns a list of every element in `l` that satisfies the predicate `f`.

`def find(f: a -> Bool \ ef, l: Nel[a]): Option[a] \ ef`Source

Alias for `findLeft`.

`def findLeft(f: a -> Bool \ ef, l: Nel[a]): Option[a] \ ef`Source

Optionally returns the first element of `l` that satisfies the predicate `f` when searching from left to right.

`def findRight(f: a -> Bool \ ef, l: Nel[a]): Option[a] \ ef`Source

Optionally returns the first element of `l` that satisfies the predicate `f` when searching from right to left.

`def flatMap(f: a -> Nel[b] \ ef, l: Nel[a]): Nel[b] \ ef`Source

Returns the result of applying `f` to every element in `l` and concatenating the results.

`def flatten(l: Nel[Nel[a]]): Nel[a]`Source

Returns the concatenation of the elements in `l`.

`def fold(l: Nel[a]): a`Source

Returns the result of applying `combine` to all the elements in `l`, using `empty` as the initial value.

`def foldLeft(f: b -> (a -> b \ ef), s: b, l: Nel[a]): b \ ef`Source

Applies `f` to a start value `s` and all elements in `l` going from left to right.

That is, the result is of the form: `f(...f(f(s, x1), x2)..., xn)`.

`def foldMap(f: a -> b \ ef, l: Nel[a]): b \ ef`Source

Returns the result of mapping each element and combining the results.

`def foldRight(f: a -> (b -> b \ ef), s: b, l: Nel[a]): b \ ef`Source

Applies `f` to a start value `s` and all elements in `l` going from right to left.

That is, the result is of the form: `f(x1, ...f(xn-1, f(xn, s))...)`.

`def foldRightWithCont(f: a -> ((Unit -> b \ ef) -> b \ ef), z: b, l: Nel[a]): b \ ef`Source

Applies `f` to a start value `z` and all elements in `l` going from right to left.

That is, the result is of the form: `f(x1, ...f(xn-1, f(xn, z))...)`. A `foldRightWithCont` allows early termination by not calling the continuation.

`def forAll(f: a -> Bool \ ef, l: Nel[a]): Bool \ ef`Source

Returns `true` if and only if all elements in `l` satisfy the predicate `f`.

`def forEach(f: a -> Unit \ ef, l: Nel[a]): Unit \ ef`Source

Applies `f` to every element of `l`.

`def forEachWithIndex(f: Int32 -> (a -> Unit \ ef), l: Nel[a]): Unit \ ef`Source

Applies `f` to every element of `l` along with that element's index.

`def head(l: Nel[a]): a`Source

Returns the first element of `l`.

`def init(l: Nel[a]): List[a]`Source

Returns all elements in `l` without the last element.

`def intersperse(a: a, l: Nel[a]): Nel[a]`Source

Returns `l` with `a` inserted between every two adjacent elements.

`def iterator(rc: Region[r], l: Nel[a]): Iterator[a, r, r] \ r`Source

Returns an iterator over `l`.

`def join(sep: String, l: Nel[a]): String`Source

Returns the concatenation of the string representation of each element in `l` with `sep` inserted between each element.

`def joinWith(f: a -> String \ ef, sep: String, l: Nel[a]): String \ ef`Source

Returns the concatenation of the string representation of each element in `l` according to `f` with `sep` inserted between each element.

`def last(l: Nel[a]): a`Source

Returns the last element of `l`.

`def length(l: Nel[a]): Int32`Source

Returns the length of `l`.

`def map(f: a -> b \ ef, l: Nel[a]): Nel[b] \ ef`Source

Returns the result of applying `f` to every element in `l`.

That is, the result is of the form: `f(x1) :: f(x2) :: ...`.

`def mapWithIndex(f: Int32 -> (a -> b \ ef), l: Nel[a]): Nel[b] \ ef`Source

Returns the result of applying `f` to every element in `l` along with that element's index.

That is, the result is of the form: `f(x1, 0) :: f(x2, 1) :: ...`.

`def maximum(l: Nel[a]): a`Source

Finds the largest element of `l` according to the `Order` on `a`.

`def maximumBy(cmp: a -> (a -> Comparison), l: Nel[a]): a`Source

Finds the largest element of `l` according to the given comparator `cmp`.

`def memberOf(a: a, l: Nel[a]): Bool`Source

Returns `true` if and only if `l` contains the element `a`.

`def minimum(l: Nel[a]): a`Source

Finds the smallest element of `l` according to the `Order` on `a`.

`def minimumBy(cmp: a -> (a -> Comparison), l: Nel[a]): a`Source

Finds the smallest element of `l` according to the given comparator `cmp`.

`def permutations(l: Nel[a]): Nel[List[a]]`Source

Returns all permutations of `l` in lexicographical order by element indices in `l`.

That is, `l` is the first permutation and `reverse(l)` is the last permutation.

`def reduce(l: Nel[a]): a`Source

Applies `combine` to all elements in `l` until a single value is obtained.

`def reduceLeft(f: a -> (a -> a \ ef), l: Nel[a]): a \ ef`Source

Applies `f` to all elements in `l` going from left to right until a single value `v` is obtained.

That is, the result is of the form: `f(...f(f(x1, x2), x3)..., xn)`

`def reduceLeftTo(f: b -> (a -> b \ ef1), g: a -> b \ ef2, l: Nel[a]): b \ ef1 + ef2`Source

Left-associative reduction of a structure. Applies `g` to the initial element of `l` and combines it with the remainder of `l` using `f` going from left to right.

`def reduceRight(f: a -> (a -> a \ ef), l: Nel[a]): a \ ef`Source

Applies `f` to all elements in `l` going from right to left until a single value `v` is obtained.

That is, the result is of the form: `Some(f(x1, ...f(xn-2, f(xn-1, xn))...))`

`def reduceRightTo(f: a -> (b -> b \ ef1), g: a -> b \ ef2, l: Nel[a]): b \ ef1 + ef2`Source

Right-associative reduction of a structure. Applies `g` to the initial element of `l` and combines it with the remainder of `l` using `f` going from right to left.

`def replace(from: { from = a }, to: { to = a }, l: Nel[a]): Nel[a]`Source

Returns `l` with every occurrence of `from` replaced by `to`.

`def reverse(l: Nel[a]): Nel[a]`Source

Returns the reverse of `l`.

`def sequence(l: Nel[m[a]]): m[Nel[a]]`Source

Returns the result of applying the applicative mapping function `f` to all the elements of the non-empty list `l`.

`def shuffle(rnd: Random, l: Nel[a]): Option[Nel[a]] \ IO`Source

Optionally returns the Nel `l` shuffled using the Fisher–Yates shuffle.

`def singleton(x: a): Nel[a]`Source

Returns a new non-empty list containing the single element `x`.

`def sort(l: Nel[a]): Nel[a]`Source

Sort the non-empty list `l` so that elements are ordered from low to high according to their `Order` instance.

The sort is not stable, i.e., equal elements may appear in a different order than in the input `l`.

The sort implementation is a Quicksort.

`def sortBy(f: a -> b, l: Nel[a]): Nel[a]`Source

Sort the non-empty list `l` so that elements are ordered from low to high according to the `Order` instance for the values obtained by applying `f` to each element.

The sort is not stable, i.e., equal elements may appear in a different order than in the input `l`.

The sort implementation is a Quicksort.

`def sortWith(cmp: a -> (a -> Comparison), l: Nel[a]): Nel[a]`Source

Sort the non-empty list `l` so that elements are ordered from low to high according to the comparison function `cmp`.

The sort is not stable, i.e., equal elements may appear in a different order than in the input `l`.

The sort implementation is a Quicksort.

`def subsequences(l: Nel[a]): Nel[List[a]]`Source

Returns all subsequences of `l` in lexicographical order by element indices in `l`.

That is, `l` is the first subsequence and `Nil` is the last subsequence.

`def sum(l: Nel[Int32]): Int32`Source

Returns the sum of all elements in the list `l`.

`def sumWith(f: a -> Int32 \ ef, l: Nel[a]): Int32 \ ef`Source

Returns the sum of all elements in the list `l` according to the function `f`.

`def tail(l: Nel[a]): List[a]`Source

Returns all elements in `l` without the first element.

`def takeWhile(f: a -> Bool \ ef, l: Nel[a]): List[a] \ ef`Source

Returns the longest prefix of `l` that satisfies the predicate `f`.

`def toArray(rc: Region[r], l: Nel[a]): Array[a, r] \ r`Source

Returns `l` as an array.

`def toList(l: Nel[a]): List[a]`Source

Returns `l` as a normal list.

`def toMapWith(f: a -> b, l: Nel[a]): Map[a, b]`Source

Returns a map with elements of `l` as keys and `f` applied as values.

If `l` contains multiple mappings with the same key, `toMapWith` does not make any guarantees about which mapping will be in the resulting map.

`def toMutDeque(rc: Region[r], l: Nel[a]): MutDeque[a, r] \ r`Source

Returns `l` as a MutDeque.

`def toString(l: Nel[a]): String`Source

Returns a string representation of the given non-empty list `l`.

`def toVector(l: Nel[a]): Vector[a]`Source

Returns `l` as a vector.

`def traverse(f: a -> m[b] \ ef, l: Nel[a]): m[Nel[b]] \ ef`Source

Returns the result of running all the actions in the non-empty list `l`.

`def unzip(l: Nel[(a, b)]): (Nel[a], Nel[b])`Source

Returns a pair of non-empty lists, the first containing all first components in `l` and the second containing all second components in `l`.

`def zip(l1: Nel[a], l2: Nel[b]): Nel[(a, b)]`Source

Returns a non-empty list where the element at index `i` is `(a, b)` where `a` is the element at index `i` in `l1` and `b` is the element at index `i` in `l2`.

If either `l1` or `l2` becomes depleted, then no further elements are added to the resulting list.

`def zipWith(f: a -> (b -> c \ ef), l1: Nel[a], l2: Nel[b]): Nel[c] \ ef`Source

Returns a non-empty list where the element at index `i` is `f(a, b)` where `a` is the element at index `i` in `l1` and `b` is the element at index `i` in `l2`.

If either `l1` or `l2` becomes depleted, then no further elements are added to the resulting list.

`def zipWithA(f: a -> (b -> m[c] \ ef), xs: Nel[a], ys: Nel[b]): m[Nel[c]] \ ef`Source

Generalize `zipWith` to an applicative functor `f`.

`def zipWithIndex(l: Nel[a]): Nel[(Int32, a)]`Source

Returns a new non-empty list where each element `e` is mapped to `(i, e)` where `i` is the index of `e`.