Chain
enum Chain[t: Type]Sourcecase Emptycase One(t)case Chain(Chain[t], Chain[t])The Chain type.
A chain is a list represented as an unbalanced binary tree. It supports efficient append and "snoc" - appending elements at the tail of the list.
Note - the constructors Empty, One and Chain should not be used directly.
Instances
instance Applicative[Chain]Sourceinstance Collectable[Chain[a]]Sourceinstance Filterable[Chain]Sourceinstance Formattable[Chain[a]] with Formattable[a]Sourceinstance Traversable[Chain]Sourceinstance UnorderedFoldable[Chain]Sourceinstance Witherable[Chain]SourceDefinitions
def ap(f: Chain[a -> b \ ef], x: Chain[a]): Chain[b] \ ef
SourceApply every function from f to every argument from x and return a chain with all results.
For f = f1, f2, ... and x = x1, x2, ... the results appear in the order
f1(x1), f1(x2), ..., f2(x1), f2(x2), ....
def append(c1: Chain[a], c2: Chain[a]): Chain[a]
SourceReturns a new chain formed by appending the chains c1 and c2.
Compares chains c1 and c2 lexicographically.
def cons(x: a, c: Chain[a]): Chain[a]
SourceAdd element x to the left end of chain c.
def count(f: a -> Bool \ ef, c: Chain[a]): Int32 \ ef
SourceReturns the number of elements in c that satisfy the predicate f.
def dropLeft(n: Int32, c: Chain[a]): Chain[a]
SourceReturns c without the first n elements.
Returns Nil if n > length(c).
Returns c if n < 0.
def dropRight(n: Int32, c: Chain[a]): Chain[a]
SourceReturns c without the last n elements.
Returns Nil if n > length(c).
Returns c if n < 0.
def dropWhileLeft(f: a -> Bool \ ef, c: Chain[a]): Chain[a] \ ef
SourceReturns c without the longest prefix that satisfies the predicate f.
def dropWhileRight(f: a -> Bool \ ef, c: Chain[a]): Chain[a] \ ef
SourceReturns c without the longest suffix that satisfies the predicate f.
def empty(): Chain[a]
SourceReturn the empty chain.
Returns true if and only if c1 and c2 and equal.
def exists(f: a -> Bool \ ef, c: Chain[a]): Bool \ ef
SourceReturns true if and only if at least one element in c satisfies the predicate f.
Returns false if c is empty.
def filter(f: a -> Bool \ ef, c: Chain[a]): Chain[a] \ ef
SourceReturns a list of every element in c that satisfies the predicate f.
The function f must be pure.
def filterMap(f: a -> Option[b] \ ef, c: Chain[a]): Chain[b] \ ef
SourceCollects the results of applying the partial function f to every element in c.
def find(f: a -> Bool, c: Chain[a]): Option[a]
SourceAlias for findLeft.
The function f must be pure.
def findLeft(f: a -> Bool, c: Chain[a]): Option[a]
SourceOptionally returns the first element of c that satisfies the predicate f when searching from left to right.
The function f must be pure.
def findMap(f: a -> Option[b] \ ef, c: Chain[a]): Option[b] \ ef
SourceReturns the first non-None result of applying the partial function f to each element of c.
Returns None if every element of c is None.
def findRight(f: a -> Bool, c: Chain[a]): Option[a]
SourceOptionally returns the first element of c that satisfies the predicate f when searching from right to left.
The function f must be pure.
def flatMap(f: a -> Chain[b] \ ef, c: Chain[a]): Chain[b] \ ef
SourceReturns the result of applying f to every element in c and concatenating the results.
def flatten(c: Chain[Chain[a]]): Chain[a]
SourceReturns the concatenation of the elements in c.
def foldLeft(f: b -> (a -> b \ ef), s: b, c: Chain[a]): b \ ef
SourceApplies f to a start value s and all elements in c going from left to right.
That is, the result is of the form: f(...f(f(s, x1), x2)..., xn).
Returns the result of mapping each element and combining the results.
def foldRight(f: a -> (b -> b \ ef), s: b, c: Chain[a]): b \ ef
SourceApplies f to a start value s and all elements in c going from right to left.
That is, the result is of the form: f(x1, ...f(xn-1, f(xn, s))...).
def forAll(f: a -> Bool \ ef, c: Chain[a]): Bool \ ef
SourceReturns true if and only if all elements in c satisfy the predicate f.
Returns true if c is empty.
def forEach(f: a -> Unit \ ef, c: Chain[a]): Unit \ ef
SourceApplies f to every element of c.
def forEachWithIndex(f: Int32 -> (a -> Unit \ ef), c: Chain[a]): Unit \ ef
SourceApplies f to every element of c along with that element's index.
def head(c: Chain[a]): Option[a]
SourceReturns Some(x) if x is the first element of c.
Returns None if c is empty.
Optionally returns the position of a in c.
def indices(c: Chain[a]): Range[Int32]
SourceReturns a range of all valid indices of the chain c.
Returns the positions of all occurrences of x in c.
def init(c: Chain[a]): Option[Chain[a]]
SourceReturns the subchain of c without the last element.
Returns None if the chain c is empty.
def intersperse(a: a, c: Chain[a]): Chain[a]
SourceReturns c with a inserted between every two adjacent elements.
def isEmpty(c: Chain[a]): Bool
SourceReturns true if and only if c is the empty chain.
def iterator(rc: Region[r], c: Chain[a]): Iterator[a, r, r] \ r
SourceReturns an iterator over c.
Returns the concatenation of the string representation
of each element in c with sep inserted between each element.
def joinWith(f: a -> String \ ef, sep: String, c: Chain[a]): String \ ef
SourceReturns the concatenation of the string representation
of each element in c according to f with sep inserted between each element.
def last(c: Chain[a]): Option[a]
SourceReturns Some(x) if x is the last element of c.
Returns None if c is empty.
def length(c: Chain[a]): Int32
SourceReturns the number of elements in c.
def map(f: a -> b \ ef, c: Chain[a]): Chain[b] \ ef
SourceReturns the result of applying f to every element in c.
That is, the result is of the form: f(x1) :: f(x2) :: ....
def mapAccumLeft(f: s -> (a -> (s, b) \ ef), start: s, c: Chain[a]): (s, Chain[b]) \ ef
SourcemapAccumLeft is a stateful version of map. The accumulating paramter s is updated at each
step in a left-to-right traversal.
def mapAccumRight(f: s -> (a -> (s, b) \ ef), start: s, c: Chain[a]): (s, Chain[b]) \ ef
SourcemapAccumRight is a stateful version of map. The accumulating parameter s is updated at each
step in a right-to-left traversal.
def mapWithIndex(f: Int32 -> (a -> b \ ef), c: Chain[a]): Chain[b] \ ef
SourceReturns the result of applying f to every element in c along with that element's index.
That is, the result is of the form: f(x1, 0) :: f(x2, 1) :: ....
Returns true if and only if c contains the element a.
def nonEmpty(c: Chain[a]): Bool
SourceReturns true if and only if c is a non-empty chain.
def range(b: Int32, e: Int32): Chain[Int32]
SourceReturns a list of all integers between b (inclusive) and e (exclusive).
Returns Nil if b >= e.
def repeat(n: Int32, a: a): Chain[a]
SourceReturns a list with the element a repeated n times.
Returns Nil if n < 0.
def reverse(c: Chain[a]): Chain[a]
SourceReturns the reverse of c.
def scan(f: b -> (a -> b \ ef), s: b, c: Chain[a]): Chain[b] \ ef
SourceAlias for scanLeft.
def scanLeft(f: b -> (a -> b \ ef), s: b, c: Chain[a]): Chain[b] \ ef
SourceAccumulates the result of applying f to c going left to right.
That is, the result is of the form: s :: f(s, x1) :: f(f(s, x1), x2) ....
def scanRight(f: a -> (b -> b \ ef), s: b, c: Chain[a]): Chain[b] \ ef
SourceAccumulates the result of applying f to c going right to left.
That is, the result is of the form: ... f(xn-1, f(xn, s)) :: f(xn, s) :: s.
def sequence(c: Chain[m[a]]): m[Chain[a]] with Applicative[m]
SourceReturns the result of running all the actions in the chain c.
def shuffle(c: Chain[a]): Chain[a] \ Shuffle
SourceShuffles c using the Fisher–Yates shuffle.
def singleton(x: a): Chain[a]
SourceReturn the singleton chain with element x.
def size(c: Chain[a]): Int32
SourceReturns the number of elements in c.
def snoc(c: Chain[a], x: a): Chain[a]
SourceAdd element x to the right end of chain c.
Sort chain c so that elements are ordered from low to high according to their Order instance.
The sort is not stable, i.e., equal elements may appear in a different order than in the input c.
The sort implementation is a Quicksort.
Sort chain c so that elements are ordered from low to high according to the Order instance
for the values obtained by applying f to each element.
The sort is not stable, i.e., equal elements may appear in a different order than in the input c.
The sort implementation is a Quicksort.
def sortWith(cmp: a -> (a -> Comparison), c: Chain[a]): Chain[a]
SourceSort chain c so that elements are ordered from low to high according to the comparison function cmp.
The sort is not stable, i.e., equal elements may appear in a different order than in the input c.
The sort implementation is a Quicksort.
def sum(c: Chain[Int32]): Int32
SourceReturns the sum of all elements in the chain c.
def sumWith(f: a -> Int32 \ ef, c: Chain[a]): Int32 \ ef
SourceReturns the sum of all elements in the chain c according to the function f.
def takeLeft(n: Int32, c: Chain[a]): Chain[a]
SourceReturns the first n elements of c.
Returns c if n > length(c).
Returns Nil if n < 0.
def takeRight(n: Int32, c: Chain[a]): Chain[a]
SourceReturns the last n elements of c.
Returns c if n > length(c).
Returns Nil if n < 0.
def takeWhileLeft(f: a -> Bool \ ef, c: Chain[a]): Chain[a] \ ef
SourceReturns the longest prefix of c that satisfies the predicate f.
def takeWhileRight(f: a -> Bool \ ef, c: Chain[a]): Chain[a] \ ef
SourceReturns the longest suffix of c that satisfies the predicate f.
def toArray(rc: Region[r], c: Chain[a]): Array[a, r] \ r
SourceReturns the chain c as an array.
def toList(c: Chain[a]): List[a]
SourceReturns c as a list.
Returns the chain of pairs c that represents an association list as a map.
If c contains multiple mappings with the same key, toMap does not
make any guarantees about which mapping will be in the resulting map.
def toNec(c: Chain[a]): Option[Nec[a]]
SourceReturns the chain c as a Nec.
def toNel(c: Chain[a]): Option[Nel[a]]
SourceReturns the chain c as a Nel.
def toVector(c: Chain[a]): Vector[a]
SourceReturns the chain c as a vector.
def traverse(f: a -> m[b] \ ef, c: Chain[a]): m[Chain[b]] \ ef with Applicative[m]
SourceReturns the result of applying the applicative mapping function f to all the elements of the
chain c.
def unzip(c: Chain[(a, b)]): (Chain[a], Chain[b])
SourceReturns a pair of chains, the first containing all first components in c
and the second containing all second components in c.
def viewLeft(c: Chain[a]): ViewLeft[a]
SourceDeconstruct a Chain from left-to-right.
Returns ViewLeft(x, rs) if the chain is non-empty, where x is the leftmost
element of the chain c, and rs is the rest of the chain.
Returns ViewLeft.NoneLeft if the chain is empty.
def viewRight(c: Chain[a]): ViewRight[a]
SourceDeconstruct a Chain from right-to-left.
Returns ViewRight(rs, x) if the chain is non-empty, where x is the rightmost
element of the chain c`, and rs is the front of the chain.
Returns ViewRight.NoneRight if the chain is empty.
def zip(c1: Chain[a], c2: Chain[b]): Chain[(a, b)]
SourceReturns a chain where the element at index i is (a, b) where
a is the element at index i in c1 and b is the element at index i in c2.
If either c1 or c2 becomes depleted, then no further elements are added to the resulting chain.
def zipWith(f: a -> (b -> c \ ef), c1: Chain[a], c2: Chain[b]): Chain[c] \ ef
SourceReturns a chain where the element at index i is f(a, b) where
a is the element at index i in c1 and b is the element at index i in c2.
If either c1 or c2 becomes depleted, then no further elements are added to the resulting chain.
def zipWithA(f: a -> (b -> m[c] \ ef), xs: Chain[a], ys: Chain[b]): m[Chain[c]] \ ef with Applicative[m]
SourceGeneralize zipWith to an applicative functor f.
def zipWithIndex(c: Chain[a]): Chain[(Int32, a)]
SourceReturns a chain where each element e is mapped to (i, e) where i
is the index of e.